The Stefan Problem for a Nonlinear Equation
نویسندگان
چکیده
منابع مشابه
Nonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملnonlinear two-phase stefan problem
in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.
متن کاملBoundary control of a nonlinear Stefan Problem
Abstract— The classical Stefan problem is a linear onedimensional heat equation with a free boundary at one end, modelling a column of liquid (e.g. water) in contact with an infinite strip of solid (ice). Given the fixed boundary conditions, the column temperature and free boundary motion can be uniquely determined. In the inverse problem, one specifies the free boundary motion, say from one st...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRigorous derivation of the Kuramoto–Sivashinsky equation from a 2D weakly nonlinear Stefan problem
We are interested in a rigorous derivation of the Kuramoto–Sivashinsky (K-S) equation from a free boundary problem. As a paradigm, we consider a two-dimensional Stefan problem in a strip, a simplified version of a solid-liquid interface model. Near the instability threshold, we introduce a small parameter ε and define rescaled variables accordingly. At fixed ε, our method is based on: definitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 1960
ISSN: 0022-2518
DOI: 10.1512/iumj.1960.9.59003